中文  |  English
当前位置: 首頁 >> 技术支持 >> 技术服务

改性塑料膨胀阻燃存在的问题和解决办法

发表时间:2011/10/20   来源:喜嘉化工(广州)有限公司

关键词:工程塑料阻燃剂、无卤阻燃剂、阻燃剂IFR、阻燃剂TPP、阻燃剂BDP/RDP、PX-200
 
    摘要:针对我国环保法令对膨胀阻燃工程塑料的要求,以及我国的商品化膨胀阻燃剂(IFR)阻燃工程塑料一
直未能真正开发和应用的问题,总结了制约IFR阻燃工程塑料发展的原因,如IFR存在热稳定性不能适应工程塑料
较高的加工温度,阻燃配方优化设计复杂,吸湿性大、耐迁出性差,和工程塑料的相容性差等问题。提出了微胶
囊包覆、偶联剂表面处理、无机金属化合物和分子筛协同、IFR的“三位一体”化、计算机辅助模拟优化IFR阻
燃配方等解决方法。
    我国已于2006年2月28日颁布了《中国电子信息产品污染控制管理办法》(不适用于出口产品),对境内生产
、销售和进口的电子信息产品禁止和限制使用RoHS指令提出的6种有毒有害物质和元素,该条例已于2007年3月1
日实行(但限制和禁用时间则尚未确定),以实现有毒有害物质在我国电子信息产品中的替代和减量化,加速电子
信息产业的结构调整和产品的升级换代,提升产品国际竞争力,使我国的电子信息产业成为节约资源、保护环境
、可持续发展的绿色产业[1]。我国阻燃塑料(特别是阻燃工程塑料)的大用户之一是电子电气行业,所以,阻燃
工程塑料必须符合《中国电子信息产品污染控制管理办法》的规定。
    随着人们对工程塑料制品阻燃要求的不断提高,各种阻燃剂层出不穷,其中膨胀阻燃剂(IFR)因具有环境友
好的特点而备受关注[2]。IFR一般是以P、N、C为主要核心成分的复合阻燃剂,可用于多种易燃工程塑料。添加
IFR的工程塑料燃烧时会在表面上形成一层均匀的炭质泡沫层,此炭层在凝聚相中能起到隔热、隔氧、抑烟和防
融滴的作用,且无卤、低烟、低毒、无腐蚀性气体。因此,膨胀阻燃技术能够应对以上环保法令的要求,已成为
非常活跃的阻燃研究领域之一[3]。
    近年来,美、意等国的一些IFR和IFR阻燃制品己商品化,大多数IFR是由聚磷酸铵(APP,酸源)、季戊四醇
(PER,炭源)、三聚氰胺(MEL,气源)三组分复配构成,主要用于聚乙烯(PE)、聚丙烯(PP)、(乙烯/乙酸乙烯酯)共
聚物(E/VAC)及弹性体等通用塑料的无卤阻燃,当阻燃剂质量分数为25% ~30%时,材料的氧指数可达30%,UL-94阻
燃级别可达V-0级,生烟量与未阻燃材料几乎相同,密度仅比未阻燃材料提高了10% ~15%[4]。
    但是现在我国的IFR阻燃工程塑料远远不能满足需求,虽然环保法令已经颁布和实施,我国商品化的IFR阻燃
工程塑料却一直未能真正开发和应用,究其原因是IFR自身也有许多需要解决的问题[5],笔者结合多年来对IFR
阻燃(丙烯腈/丁二烯/苯乙烯)共聚物(ABS)树脂的研究,对制约IFR阻燃工程塑料发展的主要因素进行总结概括

    1·IFR存在的问题
    1. 1 IFR的热稳定性难以适应工程塑料的加工温度APP和PER复合IFR的初始热分解温度在160 ~180℃,因
此该体系多用于阻燃聚烯烃的研究,而不能满足阻燃工程塑料的加工要求;同时,APP中铵根离子存在分解不稳定
问题,在加工过程中脱出的NH3使加工出的样品局部变红,严重时甚至在挤出造粒过程中出现加工不稳定的现象

    1. 2 IFR组分用量的优化匹配问题
    包括工程塑料基材在内的IFR组分用量的优化匹配关系到在燃烧条件下能否获得具有隔热、隔氧阻燃作用
的膨胀炭层。工程塑料基材不同、牌号不同可能出现组分用量的优化匹配问题。聚烯烃树脂本身不能成炭,会
因IFR的加入燃烧成炭;大多数工程塑料本身具有成炭性,阻燃剂组分用量就需要进行优化匹配;而ABS树脂这类
共聚物的膨胀阻燃就更加复杂,无卤阻燃的UL-94 V-0级ABS的研发仍然是一个技术挑战。
    1. 3 IFR存在吸湿性大的问题
    IFR存在吸湿性问题,从而导致其耐迁出性差,不能适应户外和潮湿气候[6]。IFR的吸湿性问题一直困扰着
人们。就APP/PER /MEL体系来说,首先,APP是一种白色结晶化合物,短链APP具有水溶性,而且部分分解的APP产
生的偏磷酸最终会转化为P2O5,产生吸潮性。其次, PER会因富含—OH而产生吸潮、迁移现象,使制品表面“起
霜”,产生白斑或失去光泽,迁出严重时会造成阻燃剂失效。
    1. 4 IFR组分和树脂间相容性问题
    IFR组分和树脂间相容性差,难分散。IFR要使树脂达到阻燃UL-94 V-0级需要的添加量大,并且和树脂之间
相容性差,分散困难,会造成阻燃效率下降,对ABS和其它工程塑料的物理力学性能恶化严重,尤其是冲击强度。
    2·对IFR进行处理和协同改性解决存在的问题
    随着阻燃技术的不断发展,对IFR阻燃工程塑料的综合性能的要求也越来越高,既要达到规定的阻燃级别,又
要具有良好的物理力学性能、热/光稳定性和耐老化性等。为解决以上IFR存在的问题,对于工程塑料膨胀阻燃
技术的研究主要表现在以下几个方面。
    2. 1 微胶囊化包覆APP
    微胶囊化是指用涂层薄膜或外壳材料均质敷涂微小的固体颗粒、液滴或气泡。含固体颗粒的微胶囊的形状
基本与囊内固体相同,而含液体或气体的微胶囊形状一般为球形[7]。对填料型阻燃剂来说,其实质是在微粒表
面上覆盖一层均质且具有一定厚度的薄膜,以此增加填料分散性而提高阻燃效能的表面改性方法。采用微胶囊
化技术对膨胀型阻燃剂进行包裹改性,可以改善膨胀型阻燃剂的吸潮性,防止有效的阻燃成分在阻燃系统内的迁
移和飘移,进一步改进IFR与基体的相容性,从而达到提高阻燃材料性能的目的。丁著明[8]提出采用微胶囊技术
对APP进行包覆处理,扫描电子显微镜(SEM)照片显示微胶囊化的阻燃剂加入后增加了与工程塑料的相容性。
    德国专利报导[9-10]用三聚氰胺甲醛树脂微胶囊化APP,与未微胶囊化的APP相比,微胶囊化的APP水溶性由
25℃的8. 2%和60℃的62%,分别降至0. 2%和0. 8%。
    芦笑梅等[11-12]使用E/VAC对由APP制成的IFR进行包覆改性,将合成的防潮型膨胀阻燃剂应用于阻燃PP,试
验结果表明,采用此法制得的IFR可显著提高其与PP的相容性,具有阻燃、防潮、增韧效果。
    马志领等[14]选用RY界面接枝剂,其一端含有能与活泼H反应的基团,可与IFR颗粒表面的—NH—、—OH基团
反应;另一端含有与基体相容性好的油性基团。通过表面接枝的方法,将IFR微胶囊化,电镜和流变性试验证明该
技术增强了阻燃剂与PP的相容性。
    2. 2 偶联剂表面处理APP
    偶联剂是一类具有两性结构的物质,其分子中的一部分基团可与无机物表面的化学基团反应,形成强有力的
化学键;另一部分基团则具有亲有机物的性质,可与有机分子反应或物理缠绕,从而将两种极性不同的材料牢固
结合起来。目前,工业上使用的偶联剂按其化学结构可分为硅烷类、钛酸酯类、铝酸锆类和有机铬络合物四大
类。其中硅烷类偶联剂品种最多,应用量最大。硅烷、硅氧烷、铝酸锆等自身含有阻燃元素,用这些偶联剂对
APP表面进行处理,不仅可以增强阻燃剂APP与树脂界面的相容性,提高阻燃材料的力学性能、耐热性,改善吸湿
性,而且在一定程度上还可以提高材料的阻燃性能。偶联剂表面处理APP与上述有机微胶囊APP相比,具有工艺简
单、处理过程无环境污染及价格低廉的优势。
    文献[15]介绍可以采用有机硅烷、有机硅氧烷或聚有机硅氧烷对APP进行表面处理。将处理后的APP自混合
器中取出分成两部分:一部分采用空气干燥24 h的干燥法;另一部分在干燥箱中于90℃下,以循环空气流(含20%
新鲜空气)干燥2 h。两种干燥方法获得的表面处理APP的失重均很小。空气干燥法失重0. 04%;干燥箱干燥法失
重0. 10%。上述偶联剂处理APP的方法同样适用于磷酸铵、双三聚氰胺磷酸盐、三聚氰胺硼酸盐或三聚氰胺氰
脲酸盐。
    2. 3 无机金属化合物协同IFR阻燃
    提高阻燃效率和降低阻燃剂的添加量是各类阻燃体系,包括IFR研究及追求的永恒主题之一。R. E. D.
Zielinski等[16]的研究表明,某些金属盐类和IFR并用于阻燃工程塑料中,对阻燃体系的热降解和燃烧将产生特
殊的催化作用,如降低体系的起始脱水温度,催化工程塑料脱氢和促进成炭等,从而使体系的阻燃性能和物理力
学性能都有不同程度的提高。
    M. Lewin等[17]的研究证实锌和锰的化合物对于APP/PER体系具有催化增效的协同作用。A. V. Antonov等
[18]的研究表明纳米金属粉末也可作为APP/PER体系的阻燃增效剂,其在PP中0. 05%的添加量可使氧指数由26%
升至32%。
    机理分析指出,Mn或Zn的化合物一方面可以催化APP链的交联,减少磷氧化物的裂解与挥发,保持APP的活性,
使更多的磷能够参与成炭过程,增加熔融态下体系的粘度,有利于成炭反应的进行;另一方面催化PP脱氢形成双
键,也可通过氧化作用使PP主链羟基化,在APP的作用下交联、聚芳香化、成炭。总之,Mn或Zn的化合物对
PP/APP-PER体系热分解过程中的凝缩相交联、成炭过程具有催化作用。
    2. 4 分子筛协同IFR阻燃
    分子筛是一类由SiO4和AlO-4四面体通过氧桥连接而成的晶体硅铝酸盐。传统的IFR存在着生成的膨胀炭层
致密性较差等缺点,从而影响到它的阻燃效果[19]。分子筛加入到膨胀阻燃体系中能降低生成的无定形炭的数
量并防止形成大面积的易碎裂炭层,从而改善了保护炭层的强度,提高了材料的阻燃性能。
    S. Bourbigot等[20]采用分子筛作为APP/PER膨胀阻燃体系的增效剂,可显著提高阻燃剂效果,在PP、PE、
E/VAC中应用均使氧指数大幅度提高,而最佳用量仅为1%。国内,韦平等[21]对4A分子筛在APP/PER膨胀阻燃体系
中的协同机理进行研究,发现在低于250℃时,分子筛自身催化APP/PER的酯化脱水反应。当温度升高(>280℃)时
,分子筛自身逐渐分解成SiO2及Al2O3,后者可以进一步促进放出H2O、NH3、低分子的碳氢化合物(C≤5)、醛类
等气体。所有的体系均发生炭化过程,生成的挥发性气体与熔体作用,使炭层产生膨胀,形成多孔膨胀炭层。
    郝冬梅等[22]比较了3A、4A、5A、13X 4种不同类型的分子筛在APP/PER阻燃PP体系中的协同作用,运用SEM
、垂直燃烧仪等对膨胀阻燃PP体系的表面形态和性能进行了研究。结果表明,阻燃PP加入不同的分子筛后,UL-
94阻燃级别达到V-0级,氧指数最高达到33%,分子筛有明显的促进成炭作用,可使PP获得良好的阻燃性能。分子
筛虽然在IFR阻燃聚烯烃中起到协同增效作用,但是分子筛的催化温度过低,不能应用于加工温度较高的工程工
程塑料,如ABS、尼龙6(PA6)、聚碳酸酯(PC)等,因此寻找适合工程塑料加工温度的协同增效IFR也是未来研究的
方向。
    2. 5 IFR组分的“三位一体”化
    这类阻燃剂是指酸源、炭源、气源共同存在于同一分子内,结构中一般都含有自由的、可离子化的氢的衍
生物,如此才能在加热时产生膨胀作用。为降低IFR体系的吸湿性,提高热稳定性和阻燃效率,合成集合酸源、炭
源、气源于一身的“三位一体”的IFR是大势所趋,由于分子量大,这种聚合物具有许多一般IFR体系不可比拟的
优点,如阻燃效率高、耐迁出性好等。
    马志领等[23]以P2O5、PER和MEL为原料制得炭源、酸源和气源三要素同时存在的“三位一体”IFR,考察了
酸式磷酸酯作为PP/IFR体系的偶联剂对材料性能的影响,并对其偶联机理进行了探讨。结果表明,酸式磷酸二辛
酯是体系有效的偶联剂。
    胡云楚等[24研究得出以二氨基双酚A、三氯氧磷和MEL为原料合成磷酰胺类磷氮系IFR的最佳反应条件为:
二氨基双酚A、三氯氧磷、MEL的物质的量比为1∶3∶8,用乙醚作分散介质,回流时间为5h。
    王雪峰等[25]以DPER /APP/P2O5和MEL为原料,合成了膨胀型环状类磷酸酯蜜胺盐阻燃剂,使阻燃PP的热稳
定性提高,阻燃剂添加40份时,氧指数可达33. 6%。
    虽然对“三位一体”的IFR国内已有研究,但合成并未工业化, IFR阻燃工程塑料仍以复配型为主,根据笔者
的实验发现,“三位一体”IFR合成步骤复杂,时间过长,合成产物难以分离纯化,因此对“三位一体”IFR合成原
料的选择、合成条件的探索是当前研究的主要方向。
    2. 6 计算机辅助模拟对复配型IFR配方的优化
    IFR阻燃聚合物材料配方大多要求同时具备多种功能指标:良好的阻燃性能、优异的力学性能、易于加工、
适应工业化生产。加上聚合物种类繁多、加工方法多样、应用场合和环境的差异等影响因素,使传统的配方设
计方法不能适应阻燃发展的要求。因此,现代阻燃配方设计越来越重视计算机辅助设计(CAD)技术的应用,借助
CAD技术可以自动安排实验设计方案、处理数据和优选配方, CAD技术基于人工神经网络的知识表示、获取和推
理方法,实现了聚合物阻燃配方知识的自动获取、推理和预测。最具代表性、已经成功开发的阻燃配方优化系
统有北京理工大学的聚合阻燃材料设计专家系统FRES2. 0[26及青岛科技大学基于现代橡胶配方设计系统开发
的阻燃材料配方模拟系统FRCAD1. 0系统[27],这些系统的主要优点如下:
    (1)不必由知识工程师整理、总结和消化纷繁复杂的聚合物阻燃领域的知识,只需用聚合物阻燃配方实例来
训练神经网络,就可以实现配方知识的自动获取。
    (2)由于实际应用中阻燃聚合物配方都具有多输入、多输出、严重非线性的特点,所以采用基于人工神经网
络的配方知识获取方法要比传统的最小二乘法更准确有效。
    (3)处理速度快。CAD技术系统的知识表示、知识获取、知识库、并行推理等都是通过同一网络并行实现的
,处理速度相当快。
    (4)由于人工神经网络具有联想记忆功能和泛化能力,因而对于不完全信息或噪声干扰的数据,在大多数情
况下也能得到相当准确的解答。
    FRES2. 0和FRCAD1. 0系统都是采用正交设计、均匀设计等数学模型设计实验,然后基于实验结果来训练神
经网络,实现配方知识的自动获取。系统可以结合Origin 8. 0和Excel2007嵌入阻燃聚合物的各种评价方法,如
氧指数、UL-94燃烧测试等对商品化工程塑料的一般评价方法;以及使用锥形量热仪测试阻燃聚合物的热释放、
质量损失、生烟速率和总生烟量等材料火灾和生烟安全等级的高级评价方法,预测和优化配方的阻燃性能。同
时,系统可以评价和优化材料的各种力学性能和加工性能,使IFR阻燃配方研究过程简化、速度提高、结果分析
更加合理,以便IFR阻燃工程塑料研究能够尽快商业化。
    3·结语
    IFR阻燃工程塑料具有无卤、低烟、低毒、无腐蚀性气体的特点,能够应对新的环保法规的要求,但是现在
我国的IFR阻燃工程塑料远远不能满足需求,制约IFR阻燃工程塑料发展的原因是IFR存在热稳定性不能适应工程
塑料较高的加工温度,阻燃配方优化设计复杂,吸湿性大、耐迁出性差,和工程塑料的相容性差等问题。为解决
以上问题,笔者介绍了微胶囊包覆、偶联剂表面处理、无机金属化合物和分子筛协同、IFR的“三位一体”化、
计算机辅助模拟优化IFR阻燃配方等方法,同时,针对IFR不能满足阻燃ABS、PC等工程塑料的要求,提出IFR的研
究方向。

 

技术来自:http://www.ebswax.com/ 


没有内容


公司经营产品:
返回首页 | 联系方式 | 友情链接

COPYRIGHT GUANGZHOU XIJIA NEW MATERIALS CO.,LTD RESERVER 广州喜嘉新材料有限公司  版权所有粤ICP备14041480号